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This paper presents a mathematical theory for premixed combustion under the
influence of enthalpy fluctuations in the oncoming fresh mixture. On the basis of
the assumptions of large activation energy and small Mach number, an analysis of
the thermal, hydrodynamic and acoustic regions of a flame is performed to derive an
interactive system that describes, on the first-principles basis, the intricate coupling
between the flame and its spontaneously emitted acoustic waves. The system, in its
general form, is strongly nonlinear and requires a numerical attack. In this paper, it is
employed to analyse several fundamental physical processes in relatively simple cases
in order to provide useful insights into the role of enthalpy fluctuations in combustion.
First, the linear response of the flame to two- or three-dimensional small-amplitude
enthalpy fluctuations is considered, and they are found to generate hydrodynamic
motion. Secondly, enthalpy fluctuations are shown to radiate sound waves through
their interaction with the flame. Thirdly, enthalpy fluctuations and the sound waves
emitted by them modify the flame stability, and the analysis shows that a moderate
level of enthalpy fluctuation may cause a strong subharmonic parametric instability.
Finally, in the small-heat-release limit, an extended Michelson—Sivashinsky equation
is derived to describe the nonlinear evolution of the flame under the influence of
both the imposed enthalpy fluctuations and the induced acoustic waves. Numerical
solutions suggest that the flame evolves into a time-periodic state and acquires a
curved profile, which primarily vibrates in the longitudinal direction, while its overall
shape remains almost unaltered.

1. Introduction
1.1. Premixed combustion and instability

Premixed combustion is known to be susceptible to large-scale acoustic instability,
which manifests itself as intense pressure fluctuations with predominant spectral
peaks at the characteristic acoustic frequencies of the combustor (e.g. Sivasegaram &
Whitelaw 1987). Such an instability can occur in aero- and rocket engines as well
as in land-based gas turbines (e.g. Harrje & Reardon 1972; Yu, Trouve & Daily
1991; Richards & Janus 1997), and has a number of detrimental effects. For example,
unstable combustion produces undesired oscillatory load, which may lead to structural
fatigue. The strong pressure fluctuation may cause flame ‘flash-back’ and/or ‘blow-off”.
These problems hinder the development of lean-burn gas turbine engines to reduce
emission of NO,, because burning in the lean limit is particularly prone to the
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instability. In practical applications, the instability has to be suppressed by passive
(Schadow & Gutmark 1992) or active control (Candel 2002; Dowling & Morgans
2005).

It is generally recognized that combustion instability is essentially a self-excited
oscillation sustained by a two-way coupling between the flame and acoustic modes of
the chamber (e.g. Poinsot et al. 1987; Langhorne 1988; Candel 2002). The unsteady
heat release from the flame leads to amplification of acoustic pressure when the
two are ‘in phase’ according to Rayleigh’s criterion. Acoustic fluctuations, on the
other hand, may affect the flame through kinematic, dynamic and chemo-thermal
mechanisms, including

(a) acoustic velocity advects the flame front;

(b) acoustic acceleration acts on the flame through the unsteady Rayleigh-Taylor
(R-T) effect (Markstein 1953);

(c) acoustic pressure directly modifies the burning rate (e.g. Peters & Ludford 1984;
Mclntosh 1991);

(d) sound waves modulate the feeding rate of the fuel, causing fluctuations in the
equivalence ratio of the mixture (Lieuwen & Zinn 1998).

As is indicated above, combustion instability involves intricate coupling of several
processes (chemical reaction, heat transport, hydrodynamics and acoustics), which
take place on distinct spatial scales. Chemical reaction and heat transport occur
within thin sheets, the characteristic thicknesses of which are much smaller than
the Kolmogorov scale, while acoustic wavelengths are much greater than the typical
length scale of the energetic fluid motion. Direct numerical simulations (DNS) of
combustion instability based on the reactive Navier—Stokes (N-S) equations represent
therefore a formidable task.

Theoretical modelling of combustion instability has mostly taken a semi-empirical
approach, which seeks to establish relations between the flame motion and heat
release in a phenomenological manner; see Lieuwen (2003) and Ducruix et al. (2003)
for reviews. An alternative approach, which describes flame—acoustic interactions
on the basis of first principles, may be pursued by using the large-activation-energy
asymptotic (AEA) approximations. On the basis of the assumptions of large Zeldovich
number 8> 1 and small Mach number M < 1, AEA was developed to characterize
flame—flow interactions (Clavin 1994, 2000; Matalon 2007). Depending on the ratio
of the characteristic length scale 4" of the flow motion to the flame thickness (d), two
distinguished regimes may arise. The ‘corrugate flamelet’ regime occurs if 2*/d > O(1),
for which the flow-flame system acquires an asymptotic structure consisting of three
zones: an O(d/B) reaction zone, an O(d) preheat zone and an O(h") hydrodynamic
zone (Matalon & Matkowsky 1982; Pelce & Clavin 1982). The ‘thin-reaction-zone’
regime resumes if 2*/d ~ O(1), for which the preheat and hydrodynamic zones collapse
so that a two-zoned structure emerges.

Using the AEA approach, several authors have investigated mechanism (c) referred
to above. Harten, Kapila & Matkowsky (1984) considered the interaction of a flame
with an acoustic wave, whose time scale is comparable with the transit time of
the flame, O(d/U.), where U, is the laminar flame speed. Mclntosh (1991, 1993)
analysed the burning rate response to acoustic waves in several distinguished higher-
frequency regimes. Clavin, Pelce & He (1990) studied the back effect of the burning
rate change on the acoustic field and found that the closed-loop interaction leads to
an exponential growth of the sound. The dynamic impact of an acoustic field on a
flame, i.e. mechanism (b), was investigated mathematically by Markstein & Squire
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(1955) and Searby & Rochwerger (1991). They formulated and solved the stability
problem of a flame subjected to an externally prescribed acoustic pressure and showed
that as the acoustic acceleration exceeds a threshold, it induces a violent subharmonic
parametric instability. Pelce & Rochwerger (1992) analysed the acoustic instability of
a (slightly) curved stationary flame and showed that the unsteady heat release due to
the flame surface-area change drives exponential growth of acoustic modes. The back
effect of the latter on the flame was however not considered.

The AEA theories for flame—acoustic interactions mentioned above were formulated
either for one-way coupling or for two-way coupling in a special case. A general
asymptotic theory was presented by Wu et al. (2003) (hereafter referred to as WWMP)
to describe the acoustic-flow—flame coupling in the ‘corrugated flamelet’ regime. Using
this general formulation, they provide a unified description of the flame—acoustic
coupling mechanisms of Clavin et al. (1990) and Pelce & Rochwerger (1992).

1.2. Role of acoustic and vortical disturbances in combustion instability

External disturbances play a crucial role in both the onset and control of combustion
instability. In the idealized situation of a uniform oncoming flow, an arbitrary small-
amplitude disturbance can be decomposed into acoustic, vortical and entropy modes.
In the presence of a deficient reactant, the entity of entropy generalizes to enthalpy,
which is a suitable linear combination of the temperature and reactant mass fraction.
It is therefore natural to investigate the interaction of a flame with each of three
modes separately.

Acoustic disturbances have been studied extensively because they are the key
component in flame—acoustic coupling. Flame motions and heat release have been
measured in order to extract transfer functions relating the response to externally
imposed acoustic disturbances (e.g. Ducruix, Durox & Candel 2000; Schuller et al.
2002). Theoretically, semi-empirical models based on the so-called G-equation have
been extended to describe the flame wrinkling caused by perturbations (e.g. Schuller,
Durox & Candel 2003).

In contrast to acoustic disturbances, vortical disturbances have received little
attention as far as their role in combustion instability is concerned. The only
experimental study is that of Baillot, Durox & Prud’homme (1992), who measured
the flame response to small-amplitude vortical disturbances and characterized their
relationship using a transfer function. Recently, Wu & Law (2009) analysed the
impact of vortical disturbances on flame—acoustic coupling by adapting the general
theory of WWMP. Their analysis shows that weak vortical disturbances may initiate
the subharmonic parametric resonance between the flame and the spontaneously
generated sound wave, causing an initially silent planar flame to evolve into a noisy
and highly wrinkled state.

1.3. Role of enthalpy disturbances in combustion instability

Enthalpy disturbances may consist of both temperature and fuel mass fraction
(equivalence ratio) fluctuations. The latter may arise either due to ‘unmixedness’
of the reactant (Jimenez et al. 2002) or due to combustion-generated acoustic
waves interfering with the fuel mixing section (e.g. Mongia, Dibble & Lovett 1998).
Its relevance in combustion instability was first recognized by Lieuwen & Zinn
(1998), who proposed the distinct mechanism (d) mentioned earlier. An empirical
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mathematical model, based on the assumption that the equivalence ratio fluctuation
induced by the pressure is proportional to the acoustic velocity, was proposed
by Lieuwen et al. (2001). Recent measurements indicate that pressure oscillations
correlate strongly with the equivalence ratio fluctuation at the inlet (Zimmer &
Tachibana 2007), and the latter was the primary contributor to the unsteady heat
release that causes instability (Lee, Kim & Santavicca 2000; Weigand et al. 2007).

Enthalpy disturbances are deliberately generated in active control systems using
secondary fuel injection, which is the most practical and efficient strategy because
of its flexible implementation and the sensitive response of flame to enthalpy (e.g.
Sivasegaram, Tsai & Whitelaw 1995). In closed-loop control, modulating the fuel rate
by a few percent may reduce the noise level by over 20 dB (Jones, Lee & Santavicca
1999; Tachibana et al. 2007).

Theoretical work on the interaction of a flame with enthalpy fluctuations
is surprisingly limited. Mikolaitis (1984) and Daou, Matalon & Linan (2000)
studied propagations of flames parallel and perpendicular to the enthalpy gradient
respectively using AEA. Both analyses adopted the thermal-diffusive model of
constant density. Cho & Lieuwen (2005) analysed the linear response of a conical
flame to equivalence ratio perturbation using the G-equation. In this approach, the
fluctuating equivalence ratio influences the flame kinematics through its effect on
the flame speed, which is accounted for by adapting an empirical relation. DNS
were performed recently by Birbaud et al. (2008) for the case of an open inverted
V-flame responding to a fuel mass fraction oscillation imposed at the inlet. The
calculation shows that moderate perturbations may induce highly nonlinear response
and considerable modification to the hydrodynamic motion. The role of enthalpy
fluctuations has also been studied by DNS in the context of partially premixed
combustion (e.g. Jimenez et al. 2002 and references therein). These simulations were
mostly restricted to small domains in two dimensions, and their interest was primarily
in the effect on the overall heat release and flame geometry rather than in acoustic
instability.

1.4. The scope of the present study

Given that the empirical approach neglects crucial acoustic, hydrodynamic and
thermal-diffusional processes, and DNS, on the other hand, are too costly to be
performed routinely, in this paper we shall derive, from the N-S equations for
reactive flows, an AEA theory for premixed combustion, where enthalpy fluctuations
with intensity 2~ O(1) are present in the oncoming mixture. The constant-density
assumption made in previous AEA analyses of the effect of non-homogeneous
enthalpy on flames, will be lifted in our general formulation in order to account for
the impact of enthalpy fluctuations on the hydrodynamic motion. The asymptotically
reduced theory then provides a mathematical framework for analysing, on the basis
of first principles, the role of enthalpy fluctuations on the flame dynamics and flame-
acoustic coupling.

The problem is formulated in §2, and the relevant asymptotic scalings are
specified for the flamelet regime. An asymptotic flow structure, consisting of four
distinct interacting zones, then emerges. Relevant jump conditions across the preheat
zone are derived. In §3, we consider the interplay between the acoustic and
hydrodynamics fields to derive a closed system, which describes the enthalpy—
acoustic—flame interaction. In §4, the linear response of a planar flame to weak
three-dimensional fluctuations is calculated. In § 5, we study the sound generation by
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one-dimensional enthalpy fluctuations. In §6, it is shown that an enthalpy fluctuation
and the sound generated by it may lead to a parametric instability of the flame. In § 7,
we derive, in the limit of small heat release, an evolution equation of the generalized
Michelson—Sivashinsky type to describe the nonlinear development of a flame under
the combined influence of the enthalpy perturbation and its spontaneously emitted
sound waves. A summary and concluding remarks are given in § 8.

2. Formulation
2.1. Governing equations and scalings

Consider the combustion of a premixed combustible mixture in a duct of width A"
and length [" > h"*. The fresh mixture enters the duct at a constant mean velocity
U’ and has a mean density p_,, and temperature ®@_,. Small temperature and/or
mass fraction fluctuations, which may be characterized as enthalpy disturbances,
are present on the oncoming flow. For simplicity, a one-step irreversible exothermic
chemical reaction is assumed. The gaseous mixture, which is assumed to obey the
state equation for a perfect gas, consists of a single deficient reactant and an abundant
component so that the progressive variable of the reaction can be taken to be the
mass fraction of the former, Y, while the physical properties are determined by the
latter.

Because of the steady heat release, the mean temperature (density) behind the flame
increases (decreases) to @, (o). A key non-dimensional parameter is the Zeldovich
number:

B =E(O,—O_.)/RO2, (2.1)
where E is the dimensional activation energy and £ is the universal gas constant. The
flame propagates into the fresh mixture at a mean speed Uy, and it has an intrinsic

thickness d = D;, /U, where D;, is the thermal diffusivity. For later reference, we
define the ratio 6 and the Mach number M as

§=d/h’, M=U,ja,

where a* = (yp_../p—»)"? is the speed of sound, with y denoting the ratio of specific
heats. Other relevant parameters are the Prandtl number Pr, Lewis number Le, and
the normalized gravity force
G =gh"/U}.

Let (x,y,z) and ¢ be space and time variables normalized by A" and h"/Uj,
respectively. The velocity u =(u, v, w), density p, and temperature 6 are non-
dimensionalized by U;, p_,, and ®_, respectively. The non-dimensional pressure
p is introduced by writing the dimensional pressure as (p_,, + p_,U;p). The
velocity, pressure, temperature and fuel mass fraction satisfy the non-dimensional
N-S equations for reactive flows with the reaction rate §2 being described by the
Arrhenius law:

1 1
2 =pY ——— ¢, 22
y eXp{ﬁ<@+ 9>} (22)
where ®, =1 + g is the adiabatic flame temperature with g being the heat release

parameter.

As usual, the mathematical theory will be developed by using the AEA approach,
which is based on the assumption that the Zeldovich number is large, ie. 8> 1.
The chemical reaction then occurs in a thin region of width O(d/B) centred at the
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flame front. Assume that the flame front is given by x = f(y, z, t). It is convenient to
introduce a coordinate system attached to the front (Matalon & Matkowsky 1982):

%.:x_f(va9t)v n=y, =z,

and to split the velocity u as u =ui + v, where i is the unit vector along the duct. It
is convenient to work with a rescaled enthalpy &, defined via the relation

0+qY =1+q+p'h.

The N-S equations can be written as

a4, 7 = 2.
—l— oE +V (pv)=0, (2.3)
ou 8 10 (0ds
— — Vu=——+8Prq A - 2.4
P +m8$ pv-Vu 8§+8 r{ u+3a§< $+V v)} oG, (2.4)
al—l—m——i— v-Vv=-V —|—Vf—
Y ok 1Y p 9E

1 as
+5Pr{Av—|—3<V Vf&)(ag—i-v v)} (2.5)

oh
p—+m—+pv Vh =8Ah +81A6 + B(y — 1)M2{ +m—+pv Vp}

& 9§
(2.6)
pae-}-mgg-l-,ov V@—SA@-I—Sq.Q-}—(y—l)Mz{a-I-mgé—kpv Vp}

2.7)

l+yM*p=p0, (2.8)

where m = ps,

s—u—f,—v-Vf (2.9)

= (14 |VfP )—+V2 sz——z—(Vf v); (2.10)

&2 9§
here the operators V and V? are defined with respect to the transverse variables 7
and ¢.
Thi: AEA approach requires the Lewis number Le to be close to unity, or more
precisely
Le=14+8"1 with [=o0(Q). (2.11)
As in Matalon & Matkowsky (1982) and WWMP, the hydrodynamic motion is
assumed to occur on the length scale 4*. The corrugated flamelet regime then
corresponds to
§=d/i" <1, M<K1. (2.12)
We assume that enthalpy fluctuation has intensity 2 ~ O(1), which corresponds to an
O(B~!) variation in temperature and/or fuel mass fraction. They produce an O(1)

effect on the flame and flow, but the asymptotic structure, consisting of four distinct
yet interactive regions as shown in figure 1 of WWMP, remains valid. In addition to
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the thin O(d/B) reaction and O(d) preheat zones, there are also hydrodynamic and
acoustic regions, which scale on 2" and A* = O(h"/M), respectively.

The mathematical problem for enthalpy disturbances interacting with a flame turns
out to be more complex than those for vortical and acoustic disturbances. The latter
affect, to leading order, only the hydrodynamic region so that theories describing
their impact on the flame and flame—acoustic coupling (e.g. WWMP and Wu & Law
2009) can be developed by using the results of Matalon & Matkowsky (1982). In
contrast, enthalpy fluctuations penetrate into the preheat zone to reach the reaction
sheet, thereby disturbing the chemical reaction and heat release. This implies that
the results of Matalon & Matkowsky (1982), which were obtained assuming enthalpy
fluctuations are absent, are not applicable, and the preheat zone has to be analysed in
detail in order to derive relevant jump conditions to be imposed on the flow motion
in the outer hydrodynamic region.

2.2. Preheat zone
As is implied above, the variable describing the preheat zone can be defined as

E=¢/s. (2.13)
The solution in this region expands as

(6, h, m):(/e\o, il\o, m0)+5(/0\17il\1,m1)+"', }
(u, v, p, f)=(do, Do, Po. fo)+ 81, D1, P1s fi)+ - .

On the length scale of (d), the reaction zone appears as a reaction sheet at £=0. An
analysis of its internal structure on the length scale of O(d/8) gives rise to the jump
conditions (Matkowsky & Sivashinsky 1979)

00 oh
W =[6] =0, [u] = [o] =0, {lafag} _o,
12 (00 1
(1 + |Vf|2) [8?] = qexp{zh(O)}, (2.14)
v Ougel Z _4 2y | u
|:ag+aé_\vf:| 0, [P] 3Pr(1+|Vf| ) [8§:| ,

where [+] denotes the jump of the flow quantity across the reaction zone.
The leading-order temperature and enthalpy, 6, and hy, are governed by the
equations

) 28, n, 2h, 28,
mg2 _ P o, O BT B (2.15)
0§ 9E? 0& 9€? 9E?
where
k(n, ¢, 1) =14V fol~ (2.16)

The solution is found to be (cf. Matalon & Matkowsky 1982)

~ 1+qexp{mog}, §<O,
6 K

0 =

(2.17)

o~

1+gq, §>0,
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R P ql”wéexp{mog}, £,
= K K
h_o, £>0,

(2.18)

mo = (1+Vfol2) exp (1n_.}, (2.19)
where h_,,(n, ¢, t) is a function to be determined by matching with the solution in the
hydrodynamic zone. It represents the fluctuating enthalpy approaching the flame. In
the work of Pelce & Clavin (1982) and Matalon & Matkowsky (1982), h_,, is taken
to be zero on the assumption that enthalpy disturbances are absent in the oncoming
mixture. In the present work, #_,, # 0 and so the relation ¥ =m{ does not hold. This
is the main difference from that of Matalon & Matkowsky (1982), but the ensuing
analysis turns out to be similar to theirs.

Consider now the velocity, which satisfies

moabﬁ)—Pr{xaﬁ‘O af‘)} _ 9 (2.20)
A 92 3 g2 Q€
9, { %y 10%5 } . 3Do
mi/\—PV KT—*TV =—V +7/\V . 221
0 P 0 39 fo Do Py fo (2.21)
The solution is found to be
(g, vo) + (1, =V fo) P exp s 2L E <0,
(o, Vo) = 51 K (2.22)
ug, vy )+, =V jfo)—, £>0,
Sovg)+ (1, -V qK 0 E>0
4 2 ~ ~
p0+<3Pr—1)qu°exp{’ZO§}, £ <O,
Po = 2 (2.23)
py — £, £>0,

where the integration constants ug, vy and p; represent the velocity and pressure
of the flow at the unburned side of the flame. Let [[-]] denote the difference of the
indicated quantity across the preheat (flame) zone. Matching with the solution in the
outer hydrodynamic region determines the leading-order jumps

m m
[lwol) = 220, (lool) = =22V fo, [[poll = —q explh}, (o]l =0, (2.24)
Taking the limit £ > —o0in (2.9) yields the leading-order front equation
d 1
g =ug —vy *Vf— (1+Vf0|2)1/2exp{2h_oo}. (2.25)

The analysis can be carried to next order to obtain the second-order jumps and the
equation satisfied by fi. The lengthy derivation can be found in Wu & Moin (2008).
Here we only give the final results

(1 4V fol] = = L™ £, 4 pr 2 Ha(vo +M0Vf0)H I+ q)ar
K mo & mg

IV fo WV o+ Privic —(Pr — 1) LVmy, (2.26)
K K my
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[[u1]]=—lg;@1“+)({’:Haa?”_zvzfo 2qmovf0 (}:0)}

1
—meo Vf + (1 _ %111(1 ~|—q)>Vfo'Vhoc

q [ « D B
—<K — | —— +1In(1 —h_,, s 2.2
+¢K{ <1+ +n(+q0Dﬁ ;Hmm} (2.27)

bt ] -2 ()

9§
quVf0_<2Vf0 Vfi+Vi- (K )) +{KD~MO +mo D <K>
mo mo Dt K Dt
+G<K>}1n(1+q)+qm°<1—1+q] (I‘HI))Vfo-Vh_x, (2.28)
mo 2 q

Ry o (2.29)

£ 2,
m3 Dt mg

Kk D 19
1+

[[h1]] = <1H(1 +9)+—

0
£+UO Vf] +vf -Vf0=uf—@Vf0'Vf1 —I-MaF

1 D
_2{m (ln(1+q)+H_>Dh « +mohy } (2.30)

where we have put

Doy D D D
ar = —=<2+V Vs ”0 +——Vfo+G\7fo, I(n,¢ 1) = ( >+ Ve vy +V2 1,
D Dt mg
D 9 B D D
b a0 Tt VAT

" i ! i
@(q):/ n(l4ge ) dx, x=Pr+—Lin(14+q), M, = +qln(1+q)+§l@.
0 q q

[ztmruovs) | ana [[52]]

will be derived in §2.3; see (2.33) and (2.34).

Expressions for

2.3. Hydrodynamic zone
In the hydrodynamic zone, the mean density R=R_=1for§ <O0and R=R, =1/(1+
q) for & > 0. The solution for the flow field, the flame interface and the enthalpy,
expands as

(u, v, p, f, h) = (uo, vo, po, fo, ho) +(uy, v1, p1, fi,h1))+---. (2.31)

The expansion should also consist of O(BM) terms because the acoustic pressure
contributes an O(BM) correction to the flame speed (WWMP). In order to avoid
complicating further an already complex analysis, this effect is neglected here, although
it may be taken into account by tactically assuming SM = O(§) (WWMP).
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Substitution of (2.31) into (2.3)—(2.5) leads to the equations governing (ug, vy, po):

8s0

78%_ +V- Vo — 0,
dug oy apo
R — — . = —— — RG, .
{ ” + S0 B + v Vuo} 9% (2.32)
3 vy 3 v dpo
R - - . —_ -
{ 9 +SQ 8%’ +v() Vl)()}— Vp0+Vfo 8%_,

where so = ug— fo,—vo * V fo. The momentum equations for uy and vy can be combined
to eliminate the pressure py, leading to (Matalon & Matkowsky 1982)

d ad d
mg(vo +uoV fo) + RV fo <8t + vy V) up+ R (8[ + vg V) vo = —Vpo— RGV f.

Taking the limits £ — 0% and subtracting the results, we obtain

9 11 q gmo . q o (M
0¥ | = a2y Ly (). e

The continuity equation implies that

(e - S-vn)| = —av- (2va).

o0& 0&
which may be rewritten as
duo || Vi ) i ao (m
[5el] =2 [[Ggeormm] [+ £ (). a9

Equations (2.32) are to be solved subject to the jump conditions (2.24), which
involves h_,. To determine h_,, we need to solve the transport equation of the
enthalpy

887]/;0 + S()((;l/;o + v W’lo =0. (235)
It follows from matching requirement that h_, = h(0, n, ¢, 1).

At O(8), (uy, vy, p1, hy) satisfies a linearized version of (2.32) with viscous terms.
These equations will not be considered any further, because it is more convenient to
construct a composite approximation by retaining the O(§) viscous terms at leading
order and imposing the jump conditions with O(8) accuracy. The latter follow from
combining (2.24) with (2.26)—(2.28). Note that —(gmo/k*)Vfy*V fi + gmohy /(2k) in
(2.27) can be absorbed into gm/x on the understanding that f and A_,, now stand
for the two-term approximations: f ~ fy +4f1 and h_,, ®h_,, + 8h7. On using (2.33)
and (2.34), the longitudinal velocity jump may be written as

[[u]]=q,:"+a{—ql@r+ X ar - Vf

2K (1 4+ g)m? ’

q ) «( q Dh_,,
t 3 [(Pr + 1)Vf-Vh_, + - (1 s +In(1 +q)> oy } } (2.36)
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Similarly, the transverse velocity and pressure jumps are found to be

[[v]] = —[[u]]V/f + a{uf‘q")mz ar —|—%(Pr + 1)th%}, (2.37)

k Du= mD
[[p]]=—qexp{hm}—zm[[unw{{m - *w;( )+G }ln(1+q>

P
Vf Vf P (G SV L 1)Vf-th}. (2.38)
(I+g)m K
The equation governing the flame front is
_ _ g ]Dh_
‘Vf=u — 3 M, I" — In(1 — | —= . 2.39
fit+ov f=u" —m+ { m {n( —I—q)+1+ ] By } (2.39)

Results (2.36)—(2.39) generalize those of Matalon & Matkowsky (1982) with
the latter being recovered when h_,,=0. As (2.39) indicates, enthalpy fluctuations
modulate the local propagation speed of the flame. This is a well-known effect,
which can be accounted for approximately by a thermal-diffusive model (Mikolaitis
1984; Daou et al. 2000). The velocity and pressure jumps (2.36)—(2.38) show
that in conjunction with the gas-expansion effect, enthalpy fluctuations may also
generate a hydrodynamic motion. Capturing this coupling in a theoretical framework
is important in view of the findings of DNS that enthalpy fluctuations change
hydrodynamics significantly (Birbaud et al. 2008) and that the impact of enthalpy
on the heat release and flame wrinkling would be severely underpredicted if the gas-
expansion induced hydrodynamic instability is excluded (Garrido-Lopez & Sarkar
2005).

3. Acoustic-flame-enthalpy interaction

The results obtained in §2.3 allow us to show that an unsteady flame emits
spontaneous sound waves, which act simultaneously on the flame. This two-way
coupling is primarily facilitated by the hydrodynamic motion as in WWMP, but is now
modified by enthalpy fluctuations. A composite acoustic—-flame—enthalpy interaction
theory of second-order accuracy can be derived by retaining the O(8) viscous terms in
the hydrodynamic equations, and using the jumps and front equation with the O(§)
terms included.

3.1. Acoustic zone
The variable describing the acoustic motion ambient to the hydrodynamic region is
£ = ME. (3.1)
The motion is a longitudinal oscillation and the solution can be written as

(u, p,0) = (U, Rs, O1) + (ua(§, 1), Mpa(§,1), MOL(E, 1)), p=M"p.E 1), (32)

where U, are the mean velocities behind and in front of the flame respectively. The

unsteady field is governed by the linearized acoustic equations. The elimination of 6,

and p, among those equations yields the wave equations for the pressure p, and u,,
°pa  0pa dug dPa

=0. R -9 (3.3)

arr &2
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The acoustic pressure is continuous across the flame, but as will be shown in §3.2 the
flame induces a jump in u,, i.e.

[P =0, (3.4)
[u.] = (1+|VF|?)12ex 1h —1p—34 g—(l—HVFP)l/zex lh
=4 Pt N2 ar P T2
+<1+ +In(1 + q)>(1 + |VF|2)1/2— exp{ }} (3.5)

where ¢ stands for the space average of ¢ in the (1, ¢) plane, and F is defined in (3.7).
At leading order, (3.5) reduces to

[uﬂ==q{(1+|VFPﬂﬂexp{%h_w}——1}. (3.6)

Obviously, the jump [u,] acts as an acoustic source, which is explicitly expressed
in terms of the flame position and the enthalpy advected to the flame front. The
result indicates that (a) a wrinkling flame is deemed to generate an acoustic field
spontaneously, and (b) enthalpy fluctuations radiate sound waves even when the flame
is planar. As will be shown in §3.2, sound waves in turn exert a leading-order back
effect on the flame and hydrodynamics. This is in contrast to typical aeroacoustic
problems, where sound waves are merely a passive by-product.

3.2. Hydrodynamic region

In the hydrodynamics region, u, and p, ¢ appear spatially uniform on either side of the
flame and can be approximated by their values at £ =0%. In order to facilitate the
matching with the solution in the acoustic region, we subtract from the total field
the acoustic components as well as the mean background flow by writing (WWMP)

u=Us+u,05,0)+U, f=F+F, (3.7)
p=M"p,0.1)+ Py + p, (0%, 1)(§ + F) + P, '
where P, is the mean pressure (with Py — P.= —gq), and F,=U_ — 1+ u,(07,1).
Let v = V. Then the hydrodynamic field, to O(8) accuracy, satisfies the equations
ou R%
— +V-V=—"VF,
o T
U ou U P
R|— — R 7h — =——+46PrA .
[ #5204 VU] [1+RAHEN 55 =5 +OPrav. (38)
R% R% Vv P
R { +S—€ +V- VV] [ +th(g)]¥ ——VP + VF¥ +8PrAvV,

where h(&) is the Heaviside step function, # =J[u,], and S=U — F;, — V -VF.
Matching with the outer acoustic solution requires that

U—-0, V-0, P.—>0 as & — +oo. (3.9)

The hydrodynamic motion drives the acoustic motion in the ambient regions by
inducing a longitudinal velocity jump. As in WWMP, this key result can be derived
by taking the spatial average of the continuity equation in (3.8) in the (n, ¢) plane,
and then integrating with respect to & to obtain

U=V -VF, (3.10)
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where the overbar denotes the mentioned average. Taking the limits & — 0T in the
first equation in (3.7), and taking the spatial average and using (3.10), we find

J = lud ==Vl VF + [[ul]l —q, [[U]] = ([[u]] = [[u]]) + [[VI]-VF. (3.11)

Inserting the velocity jumps (2.36) and (2.37) into the above equations, we obtain
(3.5) and

w1 = q{(l VP exp {;h_w} (L4 [VFP) 2 exp {;h_w} }

a7 1y S A (L D 9 :
+5{ 5 {VF-l—V <m >+8t ol Rl vl (el Bl s 1+q)m2AT VF

q q « Dh_,, x Dh_.,
2[(Pl’-|— )VF'V]’I_OQ+<1+L]+IH(1+Q)> <m —K——= ):|},

Dt m Dt
(3.12)
where we have put
DV~ DU~ m D
Ar = — VF — ——=VF + (G +u,,(07,1))VF. 3.13
r= s A Ve o VF (G 1, (07 1) (313)
The transverse velocity jump may be written as
(V1] = —[LQIVF + 80 — 9% A, +Lpr 4 Dygwn (3.14)
= —||U Ty . N 5 ~ —0o0 9’ .
(1 + q)m? Ty q 0

or alternatively as

(V] = —[[u]]VF + S{Pr 2 Ha
m

2 o

2
+qPrZv( E) v [ ) + S +q)Ar Y. (3.15)
Kk \m 2m? K m?

The jump in the pressure P becomes

[[P]] = [R(G + uas(07, 1)) = RL(G 4 a1 (07, )] F — glexp{h_.} —1] — 2m[[u]]
5 kDU~ mD [« _ K

+3{ —VF + {m oy +K1”)z<m) + (G+uu,z(0 ,t))m} In(1 +¢q)

q(Pr + x)

(14+g)m

Note that the local acoustic acceleration, u, (0%, ¢), plays the same role as gravity
G throughout (3.14)—(3.16), suggesting that the acoustic field creates an unsteady
Rayleigh-Taylor (R-T) effect, through which it acts on the flame.

The equation governing the advection of enthalpy 4 = H, to O(8) accuracy, reads

ey A, -vF 1+ 1" (py +1)VF'Vh_oo}- (3.16)
K K

R 8H+58? +V -VH| +[1 +R Zh(£)] H—SAH, (3.17)
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which is subject to the initial condition and jump condition (see (2.24) and (2.29))
H—H ,(n,¢,t—&) as & — —ono,

« D 19 (3.18)
1) = nt1 + )+ 0/ + ) s =
o Dt nyg
The system (3.17) and (3.18) has to be solved to obtain h_,,=H(0, n, ¢, t).

The specification of H_,, depends on where enthalpy fluctuations are introduced.
If they are introduced just upstream the hydrodynamic zone, i.e. at a location where
1< (=&)< L/M, then H_,,=#;, where #; characterizes the spatial distribution
and temporal modulation of the enthalpy imposed. However, if enthalpy fluctuations
are imposed at the inlet, then determination of s _, requires us to consider the
enthalpy advection in the upstream acoustic region, where H is governed, to leading
order, by

oH oH
— 4+ MU_+uy,t)— f)—= =0. (3.19)
ot &
Clearly, the advection is influenced by sound waves produced by the flame. On using
the method of characteristics, the solution, subjected to an error of O(M), can be

written as
H=H_ (t +/ {ua(é, 7) — uga(0, r)} dr—&/M — F> (3.20)

Applying the boundary condition at the inlet of the duct, £ = — o' L, yields
t
H_, <n, ’,t +/ [ua(—aL, 7) — u,(0, ‘[):| dt+oL/M— F> =H#1(n,¢,1). (3.21)

On approaching the hydrodynamic region, £ = O(M), H~H_,(t — & — F). The
determination of H_,, explicitly in terms of s, is however not straightforward,
because H_,, contains u,, which in turn depends on H_, (as a function of ¢). Such an
interdependence reflects the long-range upstream influence of the flame through
the spontaneously emitted sound waves. In many practical situations, enthalpy
fluctuations present at the inlet may arise because of the acoustic pressure interfering
with the mixture supply, in which case #; may also be a functional of p, or u,, the
precise relation depending on the dynamics of the mixing/feeding system.
The coupling with the flame is completed through the front equation

q ]Dh_oo

|5 } (3.22)

Equations (3.8), (3.17) and (3.22), coupled to the acoustic equations (3.3) via (3.5),
form an overall interactive system to describe the complex flame—acoustic—enthalpy
coupling. As is illustrated in figure 1, upstream enthalpy fluctuations are advected
by the hydrodynamic field of the flame. On the other hand, enthalpy fluctuations
directly influence chemical reactions and therefore modify flame speed, through
which the hydrodynamics is simultaneously influenced by enthalpy fluctuations.
Moreover, the flame motion and enthalpy fluctuations radiate sound waves, whose
acceleration creates an R-T effect to act on the hydrodynamics and ultimately on the
flame.

The reduced system remains highly nonlinear and, in general, has to be solved
numerically. Nevertheless, analytical progress may be made in a few special cases,

F, 4V~ -VF =U"—(m — 1)+8{M r —[m(l +q)+
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FIGURE 1. A diagrammatic illustration of the couplings among the flame, hydrodynamics,
acoustics and enthalpy perturbations.

where generally coupled fundamental processes of combustion instability become
decoupled. We now consider several of those processes, and our focus will be on new
physical mechanisms which operate only when enthalpy fluctuations are present.

4. Linear response to small-amplitude enthalpy fluctuation

Enthalpy fluctuations in two or three-dimensions interact with the flame to generate
a hydrodynamic motion. This is an important effect, which has been addressed
theoretically in the literature. We shall demonstrate it by calculating the flame response
to small-amplitude enthalpy fluctuations in the same spirit as Searby & Clavin (1986)
and Aldredge & Williams (1991) did for vortical disturbances. The flame is assumed
to be intrinsically stable. Then in response to an imposed fluctuation, the flame is
slightly wrinkled and the induced hydrodynamic motion is weak, so that (3.8) and the
jump conditions can be linearized. Since the spontaneously generated sound waves
are negligible, the enthalpy disturbance is simply advected by the background mean
flow.

An enthalpy fluctuation in general has a continuous spectrum and may be
represented by an integral over all Fourier modes. Owing to linearity, it suffices
to consider only a single component

H] — hy e i(wE+kan+kzt—wt)

imposed at &, with —&, < L/M, where k' = (k, k3). The linearized advection equation
(3.17) can be solved to obtain the enthalpy at the flame front

heoe(n, £, 1) = H(0,n, ¢, 1) = hy e W H 08 g ilanthatzan = g ilhantiac=an,

where k = (k3 + k2)'/2, and h_,, is related to h, via the relation h_, =h, e ** o)
which accounts for attenuation of the enthalpy fluctuation.
The steady-state solution for (U, V, P) and (f) can be written as

(U, V, P, F)=(U, V, P, F)e'lnthizon (4.1)
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After substituting this into the linearized (3.8), it is easy to find that

Thogp T V= D @)

P=Pte™ U=
where ¥ = @Ry +1Pr(k>+w?R2)5+0(8?), and the constants C* and D* correspond
to vortical fluctuations. To focus on enthalpy fluctuations, we assumed that vortical
fluctuations are absent in the upstream, ie. C- =D~ =0. However, C* and D" are
non-zero, that is enthalpy fluctuations by interacting with the flame generate vorticity.
Substitution of (4.1) and (4.2) into the continuity equation, linearized front equation
and jump conditions leads to a system of six simultaneous equations, solving which
we obtain

F= A(k ) s (4.3)
U(o—,kT)z{ —lg + Diok— o’ +50uk @) | (1+8Qh)}ﬁw, (4.4)
Ak, w)
where
Ak, w) = Ao’ + i Bw— b, (4.5)

with the constants .o/, 4 and % being the same as given by Wu & Law (2009), while
the rather unwieldy expressions for Qr, Q, and Q, can be found in Wu & Moin
(2008). To leading order, one may put Qr=Q, = Q, =0, and

Ak, w) = (Ry + R_)w* + 2ikw + gk*> + k(R — R_)G. (4.6)

If the fluctuation is, for simplicity, assumed to be homogeneous and isotropic, then its
spectrum @ (k) can be written as @ (| k |), a function of |k|= (k3 + k3 + »?)!/?, where
k =(w, k"). The spectra of the fluctuations in the velocity at the front and the flame
positions, @, ,(w) and @ r(w), can be expressed as

« i 2 — 2 2,2

@lm(a))z/ (‘I'i'l)lz)i‘k'i'wa)) o —1(1+5Q ) 2(k*+w )Béﬂ@(‘kndk’f (4.7)
@ +Dk—iw+6 2,2 &

D p(w) = / 4 )A(k :))) Or[* gasurvts (1 e d k. (4.8)

The transfer functions | F(k, w)| /fz_w and |U_(k, w)|/ h_.,, which measure the sensitivity
of flame-front displacement and fluid motion to enthalpy perturbations, are calculated
by using (4.3) and (4.4), and the parameters used are as follows:

=10cm, [*=120cm, ¢=5, U, =10cms™,
D;, = 022cm®s™!, @' =340ms™!, Le=111, B=12, y=14.

They give rise to § =2.2x 1073, Mach number M =2.94 x 10~* and Markstein number
Ma =4. The same set of parameters will be used in the rest of the paper unless stated
otherwise. The contour plots displayed in figure 2 indicate that the typical values
of |F|/h_, and |U_|/h_, are about 0.02 and 1.5, respectively. The result suggests
that in the presence of 1.6 % local mass-fraction fluctuation at the flame front (which
corresponds to hey= 1), the wrinkled flame has a 2 mm flame-brush thickness, and the
induced hydrodynamic velocity becomes comparable with the laminar flame speed.
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FIGURE 2. Contours of transfer functions |F(k, w)| /fz_OO and |U_(0, k, w)| /fz_oo.

Spectra of enthalpy fluctuations are unavailable in the literature. We assume that
they are similar to those for scalar fluctuations, and so we take

(k) =n2(1+ (r| k)",

which characterizes temperature fluctuations in a uniform mean flow (see (3-182) and
(3-221) in Hinze 1959); here r, is the ratio of the integral length scale to A*. In the
calculation, we take r, =0.1. The result is shown in figure 3. The spectrum of the
flame brush, @ r, decays monotonically with w, but @, , exhibits a peak at a quite
low frequency. Both attenuate rapidly as w increases. The attenuation is controlled
by &, (taken to be —0.5), and is eliminated if &, =0. The spectra in this limit case
serve as the upper bounds and are included for comparison. The overall qualitative
feature is not altered by &,.

Because of the wrinkling effect, the change in the flame surface area (or length in
the two-dimensional case) must be proportional to the enthalpy intensity squared.
This scaling behaviour is consistent with the DNS result of Garrido-Lopez & Sarkar
2005).



20 Xuesong Wu and Parviz Moin

75 100

FiGure 3. Spectra @, , and @ r. Solid lines: £, = — 0.5; dashed lines: £, =0.

5. Acoustic radiation of enthalpy fluctuations

As enthalpy fluctuations induce a hydrodynamic field causing a planar flame to
wrinkle, sound waves are emitted because of the change of the flame-surface area. The
resulting acoustic field is inherently coupled with the hydrodynamics, the flame motion
and enthalpy advection in a strongly nonlinear fashion for two- or three-dimensional
enthalpy fluctuations with O(1) values of #; or h_,. In the rest of this paper, we
will consider the case where the upstream enthalpy fluctuation is one-dimensional,
as was assumed in earlier studies (Lieuwen et al. 2001; Birbaud et al. 2008). Further
analytical progress is then possible even for order-one ;. The front equation admits

a simple solution
_ ! 1
F=F=/ {l—exp (2h_w(t)>}dt (5.1)

representing a vibratory planar flame, for which the hydrodynamics field is absent.
For simplicity, the enthalpy is assumed to be modulated periodically in time at a
location —& < LM ™!, and so we may take

heo = A1(0,1) =h (e +c.c.). (5.2)

The jump across the hydrodynamic zone, (3.6), can be written as a Fourier series
I~ . : ) a
[u,] = q{exp {zh(e o4 C.C.)} — 1} = Zjn e """ with j, =qh"/n!,

and it indicates that a one-dimensional enthalpy fluctuation produces sound waves.

5.1. Non-resonant case

Assume that none of the harmonics in the enthalpy fluctuation has a frequency
coinciding with any eigenfrequency of the duct modes. Then, the solution for the
acoustic field can be expressed as Fourier series

(Pa» 1) = Z{(l R;l/z)a:—re*m!z””g + (1’ —R;/z)alie iR'i/ang} eln L ce (53)

The constants a;" and a* can be determined by using the jump conditions (3.4) and
(3.5), and the boundary conditions at the two ends of the duct, namely u, =0 at
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FIGURE 4. The intensity of the sound waves emitted by enthalpy fluctuation (5.2) versus w for
h =1 (solid lines) and 4 =0.2 (dotted lines). The mean flame position corresponds to o =0.75.

= —oL and p,=0 at £ =(1 — o)L, where L is related to the dimensional length
of the duct [* via L=MI["/h*, and o is a parameter characterizing the mean flame
position. We find that

ij,R)? tan(RY*(1 — o)nwL)
2A,(nw; o) cos(RY*onwL)

and the acoustic pressure level at the entrance (which we take to represent the sound
field)

12 12

(eiR onwL’ efiR ona)L)’ (54)

(a . a7) =~

= RV tan(RY(1 — o)nwl)
|Pal = Z 12 ) (5.5)
“~ A,(nw;o)cos(R"onwL)
where
R\ 2
As(w;o) = (R+) tan(R?cwlL) tan(RL/z(l —0o)wlL) — 1. (5.6)

The characteristic acoustic frequencies of the duct are given by the roots of the
acoustic dispersion relation

As(w; o) =0. (5.7)
A countable number of roots w; =wi (o) (k=1,2,...) may exist.

Figure 4 shows the variation of the acoustic wave intensity with the frequency of
the enthalpy fluctuation for a planar flame with its mean position at 0.75L distance
from the inlet. A spiky appearance is observed. Discrete ‘peaks’ appear at resonant
frequencies, which satisfy the relation

nw = w, (5.8)

where n # 0 is an arbitrary integer. Since the effective forcing j, at the nth harmonic
frequency nw behaves as j, =h"/n!, ‘peaks’ at larger values of n are weaker, and for
small ~ they almost disappear so that the dotted curves (for 2 =0.2) become less
spiky.

5.2. Discussion of resonance

For a flame with a fixed mean position, the stationary solution (5.5) becomes invalid
when the resonance condition (5.8) holds. Instead, the sound wave would amplify in
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proportion to time ¢. If the acoustic loss is sufficiently small, the sound wave may
amplify to such an extent that it acts back on the flame to cause parametric instability.
The instability will in turn produce extra sound waves.

If a flame is moving, then for a fixed w, resonance is of transient nature in which
it takes place only in the vicinity of the position corresponding to o. for which
nw = wy(o,). For definitiveness, suppose that at time =0, a flame is positioned at
the entrance. Then, at an arbitrary time ¢, its mean position can be written as
M(l —U_)t=(1 —o)L. The flame moves to the resonance position (1 — o.)L at
t.=(1—o0o,)L/(M(1 —U_)). When ¢ (or o) is sufficiently different from ¢z, (or o), the
acoustic response is of quasi-steady and non-resonant nature, and its solution is given
by (5.4), in which o plays the role of a parameter. However, as the flame approaches
the resonant location, i.e. as ¢ — o,

7iR1,/20(,u)L N 1.]n (1 —_ R+/R,)_1

— !
2tan(R1,/2ngL)Sin(Rl/ZGCwL)(w(l U )M(t—1.))".  (59)

a; e

The quasi-steady response is no longer valid when M(t — t.) = O(M'/?) because the
rate of the change of the response becomes comparable with the rate of change of the
mean flame position. To describe the evolution of the sound in the resonant region,
we introduce

t=t.+M "1 (5.10)

Relations (5.9) and (5.10) imply that in the resonant region, the acoustic pressure
and velocity are of O(M~'?h_,)). We assume that h_, ~ M'/? so that the solution
expands as

Pa=B(@)pas + M Ppar+--, uy= B0 g +M"Pus,+-, (5.11)

where B is the amplitude function of the acoustic mode of the duct

(Pats tar) = { (1 RZP)aF e 058 4 (1L =R P)ait e o e (512)

The eigenfunction is normalized such that ¢, = g 2iR ool Inserting (5.11) into (3.3),
then at O(M'/?) we have

a2pa,2 . azpal
at? &2

. / auu2 apaZ /
= —2RiwB w1, R -~ =——>--—RB al- 5.13
1wB(T)pa,1 P! Py (Tt ( )

Because the homogeneous equations admit an eigensolution, the inhomogeneous
system has an acceptable solution only when a solvability condition is satisfied. The
latter leads to the amplitude equation for the acoustic mode (Wu & Moin 2008)

B'=1ix,tB+N, (5.14)
where x; = (w/L)(1 — Ry /R_)(1 — U_) tan(R"*0,wL)A,and N=j A /(2L sin(R"*0,wL)),
with A being the same as (4.41) of WWMP. The relevant solution to (5.14) is found as

B= NeiX“Tz/z/ e T, (5.15)

0

Note that as T — —oo0,

B — i(1—R./R_)""j/Q2tan(R*0.wL)sin(RY*c.wL)))(w(1 —U_)t)"',  (5.16)
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FIGURE 5. Evolution of the sound intensity through the transient resonant phase for U_ =0.2
and 0.8. The dashed and dotted lines represent the asymptotic upstream and downstream
behaviours, (5.16) and (5.17), respectively.

matching to the pre-resonance solution (5.9) as expected, while as T — oo,

—ixs7/2

B — B,e*"/* with B, —N/ — dr. (5.17)

Figure 5 shows that the sound intensity may amplify considerably via the transient

resonance during the time window in which the flame propagates through the resonant

location. The gain in the intensity depends on (1 —U_), the propagation speed relative

to the duct; it decreases with the feeding velocity U_ of the oncoming mixture.
Interestingly, the acoustic amplitude in the post-resonance phase is oscillatory.

6. Parametric instability of the flame: linear analysis

Enthalpy fluctuations and the sound they generate exert a periodic forcing on the
flame. This leads to a parametric instability of the planar flame (5.1), as was shown in
an earlier preliminary study (Wu 2005). In this section, we present an analysis based
on the leading-order approximation of the hydrodynamic equations and the jump
conditions. A refined but more involved analysis with O(§) accuracy is given in the
Appendix.

The planar flame (5.1) is perturbed so that

F = /l{l—exp< w(z))}dz—ki’. (6.1)

For F < 1, the hydrodynamic motion is weak, governed by linearized (3.8)

BU BU U 3P 3V

where we have put

+ Lot )7 —VP, (6.2

Io(t) = exp{Lh_..(1)}.
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Because the coefficients of (6.2) are independent of the transverse variables, one may
seek solutions of the normal-mode form

(F, P, U, V)= (alt), P(&,1), UE, 1), V(£ 1))eilnthd) (6.3)
It is found that (cf. Wu & Law 2009)
AT k&
@ V)= (1, llf /+k)¢-(t)e g ) ) &£ <0, (64)
(1, —i k'/k)py(t) e ™ + (C(7), D4()), & >0,

- / k&
5 { k™ (R_¢' +kIpp_)e*, & <O, (6.5)

A\ KU(RPL —kIp)e ™, B0,

where ¢, are functions of 7, while C. and D, are arbitrary functions of
= ftlo(‘[)dl' — R, &. It follows from the continuity equation that

—R.C,+ik'-D, =0, (6.6)

while the linearized jump conditions and front equation, F,=U(0", 5, ¢), give the
relations

(Ry¢. — ko) =—(R_¢_ + klop_) + k{(Ry — R_)G — Ap,¢}a,
ikt ik s ) (6.7)
—T¢++D+:T¢—_1kq10a7 ¢+ +Cp=¢_, o =¢-.

After eliminating ¢4, C+ and D, we obtain
(Ry + R_)a"(1) + 2kIo(t) (1) — {qk21§(z) L k((Ry—R_)G — Apa,g(t))}a —0, (68)

which is a parametrically excited (Floquet) system. In the Appendix, this equation is
generalized to (A 16), which has O(8) accuracy. As expected on physical ground, the
acoustic waves Ap, ¢ emitted by enthalpy perturbations act on the flame. However,
enthalpy disturbances also modulate the flame stability directly via the factor I, in
(6.8); this latter effect cannot be accounted for by a simple physical argument. This
parametric instability thus differs from that caused by externally imposed acoustic
waves, and may occur only when enthalpy fluctuations are present since (6.8) reduces
to the familiar equation governing the Darrieus—Landau (D-L) instability if 4_,, =0.
In the non-resonant case, it is necessary that 7_,, = O(1), and

0

iwR i
Apag(t) = Z m

n=1

12
R_ .
X {1 — <R> tan(R"?onwL) tan (RY*(1 —U)na)L)} e fcc. (6.9)

+
For the resonant case, h_., = O(M'/?), and consequently (6.8) simplifies to
(Ry + R)a"(1) + 2k (1) — {qk> + k(R — R1)G — Apa(t)la =0,  (6.10)
where

Apae(t) =20(1 — Ry /R_)R?sin(R"*owL)B(t)e ' +c.c. = —(x.B(t)e ' +c.c.),
(6.11)
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with B being given by (5.15). Now Ap, ¢ varies with the slow time t as well as with
t, but the dependence on t may be treated as being parametric, since the parametric
instability occurs over a much shorter time scale.

According to Floquet theory, (6.8) or (A 16) admits solutions of the form

o = e"a(t),

where a(t) is a periodic (and hence bounded) function of ¢ with period 21n/w, and u
is the Floquet exponent with its real part u, indicating stability (instability) according
to u, < 0 (u, > 0). Solutions are found numerically by integrating (6.8) and (A 16)
(with Ap, given by (6.9)) using a fourth order Runge-Kutta method from =0 to
t =21 /w to obtain the principal fundamental matrix, from which p can be calculated.

We first consider the case U; =10cms™!, and the gravity force is_dropped (i.e.
G =0). The enthalpy fluctuation is assigned a moderate amplitude h =0.6, which
corresponds to about 1% mass-fraction fluctuation. The growth rates for different
frequencies are shown in figure 6(a). An enthalpy fluctuation of moderate amplitude
modifies the usual D-L instability (the dashed line): for most forcing frequencies, the
growth rate of the most unstable mode is enhanced, whilst the bandwidth of unstable
modes becomes narrower. Of interest is the question whether an enthalpy fluctuation
may have a net stabilizing effect, i.e. it reduces the unstable bandwidth without
destabilizing the most unstable mode. A search indicates that that is realized only for
an enthalpy perturbation with a frequency in a very small vicinity of the ‘optimal’
value w =250 (curve 1), which is about a 1/3 of the frequency of the fundamental
duct mode. An enthalpy disturbance with a frequency slightly above or below this is
found to have a twofold effect on the stability.

For a frequency fixed at the optlmal’ value o =250, the effect of i 1ncreasmg the
enthalpy amplitude is displayed in figure 6(b). As h increases to 0.7, the maximum
growth rate is reduced and the instability band is narrowed farther. However, as
h is increased to 0.75, a secondary instability band consisting of larger transverse
wavenumbers emerges. By monitoring Floquet multipliers, the onset of this band is
found to be associated with the subharmonic parametric instability. When / reaches
0.8, the second band becomes the dominant instability. Further calculations with
G # 0 indicate that the subharmonic parametric instability also prevails when 7
exceeds a critical value, and it may completely destabilize a flame which is otherwise
free of the D-L instability, that is the parametric instability is a mechanism distinct
from that of the D-L.

The result for the case Uy =20cms™ is shown in figure 7. Now a moderate level
of enthalpy disturbance fixed at 7 =0.6 exerts a destabilizing effect for all frequencies
in which it increases the maximum growth rate while causing the unstable bandwidth
to broaden (figure 7a). The optimal frequency appears to be the one for which
the growth-rate curve (curve 1) overlaps that of the D-L instability. Increasing the
enthalpy amplitude has the same effect as observed in the case of U, =10cms™.
The D-L modes in the low-wavenumber band are stabilized, but a second band of
subharmonic parametric instability emerges and soon becomes dominant (figure 7b).

Figures 6(b) and 7(b) suggest that at a fixed w, there may exist a small interval of 4
(between 0.6 and 0.7) for which the enthalpy has a stabilizing effect. Such an interval
may be continued to identify a stabilizing region in the h—w parameter plane. Such
a delicate search has not been pursued here, because it is better to be performed for
parameters pertaining to a particular experimental condition.

—1
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FIGURE 6. Parametric instability of the oscillatory planar flame with U;=0.1 ms '

(a) Growth rates u, versus k for different frequencies w =250 (curve 1), 300 (curve 2),
350 (curve 3) and w =150 (curve 4); the enthalpy disturbance amplitude # =0.6. (b) Growth

rates u, versus k for different amplitudes h=0.6 (curve 1), 0.7 (curve 2), 0.75 (curve 3) and
0.8 (curve 4); the enthalpy disturbance frequency w=250. The dashed line in each figure

represents the D-L instability in the limit / =0.

7. Nonlinear instability in the limit of small heat release

For the problems considered in §§4-6, the flame is governed by linear dynamics.
In this section, we study weakly nonlinear development of a flame in the limit of
small heat release, ¢ < 1. The focus will be on the non-resonant case, which is of
interest as experiments indicate that modulating the fuel at low frequencies (about
1/4 the fundamental acoustic frequency of the combustor or even lower) is effective
in stabilizing combustion (e.g. Jones et al. 1999; Richards, Janus & Robey 1999).

Suppose that F = O(¢). The jump conditions imply that U, V, P ~ O(ge¢). In the
absence of enthalpy fluctuations, the gas expansion effect drives a weak hydrodynamic
instability with an O(g) growth rate, as can be inferred from (6.8). Then, the
hydrodynamic field is governed by linear ‘quasi-steady’ equations to the first order of
approximation. The geometric nonlinearity in the front equation (3.22) is of O(e?),
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FIGURE 7. Parametric instability of the oscillatory planar flame with U;=0.2m s~

(a) Growth rates u, versus k for different frequencies w=125 (curve 1), 225 (curve 2),
305 (curve 3) and 75 (curve 4). The enthalpy disturbance amplitude 7 =0.6. (b) Growth rates

wu, versus k for different amplitudes h=0.6 (curve 1), 0.7 (curve 2), 0.75 (curve 3) and 0.8 (curve
4). The enthalpy disturbance frequency w = 125. The dashed line in each figure represents the

D-L instability in the limit s =0.

comparable with U~ and must be retained when € = O(g). In this case, the well-
known Michelson—Sivashinsky (M-S) equation can be derived (Sivashinsky 1977).
This equation has been extended/modified in various ways and applied to flames
with ¢ = O(1) (e.g. Joulin & Cambray 1992). However, equations of this type have
two limitations: (a) they cannot describe short-time transient behaviours of a flame
and (b) the acoustic field generated by the flame is ignored.

When an enthalpy disturbance /_.(¢) is present, acoustic acceleration Ap, s ~ O(q)
is induced. The flow evolves over two time scales: a short scale t ~ O(1) associated
with h_(t) and Ap,e, and a much longer intrinsic scale t ~ O(g~'), over which the
instability develops. For this reason, the fully ‘unsteady’ but linearized hydrodynamic
equations will be employed, while the front equation takes, to O(e?) accuracy, the
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nonlinear form
=Up(07, 1) — L e/~ |VF|> + vV°F, (7.1)
where v =38M,. Here it has been further assumed that § = O(¢) in order to retain the
effect of flame curvature. This term renders the initial-value problem well-posed as it
sets a high wavenumber cutoff beyond which the D-L instability is stabilized.
In Fourier spectral space, the solution to (6.2) is given by (6.3) with (6.4) and (6.5).
By eliminating C,, ¢+ and D, from (6.6) and (6.7), it can be shown that

DkeWMhs  K{(Ry— RG — Ap,g) + gk’ e’
kel o
R, +R_ R, +R_

The equation can easily be solved to find ¢_, which is inverted to obtain U and then
substituted into (7.1) to give

¢+ (7.2)

where
= YF(—t1,9)K “(1=7) t
s 4n2/{//|k|(t T, Kk 1, 7)e'" diidk'} dt
Kk 1,7) = R++R_ {(Ry —R_)G — Ap,(t —7) + gke" ="}
2k T N
= (1/2Dh_p(t—%) 4 = 4
xexp{ R++R_/Oe df}_ (7.4)

It is noted that treating the hydrodynamic field as being fully unsteady leads to
history-dependent integro-differential equation.
When enthalpy disturbances and gravity are both absent, (7.3) reduces to

+ U VF? =vWF + 7, (7.5)

where

t o0 o0
q 2 7 2kt ik -1 35 g Bt
SR B— KF(t — A diid k' dz.
w1, {/_w/_w =T Mepi-—g e Tdkydr

Now without acoustic and enthalpy fluctuations, there is no natural fast time scale.
The conventional approximation of neglecting the time-derivative term in (7.2) leads
to the familiar M-S equation (Sivashinsky 1977)

1 o0 o0 R N . N "
+2|VF2=vV2F+8qn2/ / (kT |F(t, f)e' 0D diqd kT (7.6)

which is somewhat simpler than (7.5) in which it is local in time. However, the
approximation employed implies that (7.6) is not applicable to the transient phase
occurring on the time scale r ~ O(1), whilst (7.5) (which may be called ‘non-local’
M-S equation) has the advantage that it describes the entire evolution from a general
initial condition. Matalon & Metzener (1997) found that taking into account this
transient effect is crucial for explaining the formation of the so-called tulip flame in
a closed tube.

In the limit ¢ < 1, (7.3) stands as a self-consistent approximate equation (with O(¢)
accuracy) that governs the nonlinear development of broadband instability waves.
Unfortunately, the self-consistency is lost for ¢ = O(1). Nevertheless, a noticeable
feature of (7.3) is that the linear instability is exactly the same as that for the general
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FIGURE 8. Solution to (7.3) when 2 =0 as shown by flame front profiles at different times.
The dashed lines represent the steady 1-pole solution, and dotted line represents the initial
condition.

case with g = O(1), that is it immediately reduces to system (6.8) if the geometric
nonlinear term is ignored. Therefore, even when ¢ = O(1), (7.3) is expected to have
some validity provided that nonlinearity is not too strong.

In the general case, the evolution equation (7.3) in physical space is rather complex
and may not be best suited for numerical studies. It is more convenient to work in
Fourier space instead. The nonlinear front equation is Fourier transformed, and the
resulting equation is combined with (7.2) to form the system

1 * 2 = A AT 4
o =~ + ¢+ eV / B =it =k dE

(7.7)

, 2keWie  k{(Ry — ROG — Ap,) + gk e’
_ = o
- " R.+R_ R.+R_

For a two-dimensional flame in a finite domain —1 < n < 1, the solution for (f) may
be expressed as

F(n.t)= > fult)ye"™.
A discrete version of (7.7) holds for f,=«a(k) and ¢,=¢_(k) with k= + nn
(n=0,1,2,...). This nonlinear system is solved numerically by using a pseudo-
spectral method.

As a validation of the computational code, the non-local M-S equation in the
limit A =0 is solved first. The front profiles at different times are displayed in
figure 8. Consistent with previous findings (e.g. Rastigejev & Matalon 2006), the
solution approaches a steady state, which for v=0.44 corresponds to a coalescence
1-pole solution (Rahibe, Aubry & Sivashinsky 1996; Vaynblat & Matalon 1999). The
numerical solution is in good agreement with the exact solution.

In the presence of an enthalpy disturbance with an amplitude 4 = 0.6, the solution
evolves into a periodic state. The profiles at three instants over one period are shown
in figure 9. The overall shape is very different from that of the steady solution attained
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FIGURE 9. Solution to (7.3) when 2 =0.6 and v =0.44 as shown by flame front profiles at
different times.

AUfr and AS
(=)

|

—

L L
———
“

r D>
—— &
—_—|
——
—
= |
— e
—T
—
—- =
——7—
———
77—
T

/

1(2m)

FiGUure 10. Flame speed AUr and surface area alteration AS versus time ¢ for v=0.44 and
h =0.6 (solid lines), and the comparison with the corresponding result for 4 =0 (dashed lines).

when 7 =0. On the other hand, the shape of the flame front hardly changes with
time.

Of particular interest are the averaged flame speed AUr and the alteration of the
flame surface area AS, which may be defined, respectively, as

1/2

AU = LF = 0. AS = (VAT = E(nnﬂﬁ,mz} Cas)

They are used to characterize the overall flame response to enthalpy fluctuations. The
evolution of AS and AUy for v=0.44 is displayed in figure 10. The surface area is
modulated periodically about its mean value, but the oscillation magnitude is very
small, consistent with the profile shown in figure 9. In contrast, the overall flame speed
oscillates at a large amplitude, suggesting that the flame front vibrates almost rigidly
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FiGURE 11. Solution to (7.3) when h=0.6 and v =0.044 as shown by flame front profiles at
different times. The dashed line represents the steady solution attained if 2 =0.
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FIGURE 12. Flame speed AUy and surface area alteration AS versus time ¢ for v=0.044 and
h=0.6 (solid lines), and the comparison with the corresponding result for 4 =0 (dashed lines).

in the longitudinal direction. Note that despite the relatively moderate amplitude of
the enthalpy perturbation, both the mean surface area and mean flame speed differ
appreciably from those when enthalpy fluctuation is absent.

We also solved the extended M-S equation for a small v =0.044. Again, the solution
approaches a periodic state (figure 11). The flame would appear to be breathing
periodically without significantly changing its overall shape, which is similar to the
steady solution attained when 4 =0, but is more elongated. As illustrated in figure 12,
the surface area varies slightly about its mean value, but there is a significant
modulation in the overall flame speed, the mean value of which is about 50 % higher
than that for 7 =0.
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8. Discussion and conclusions

Instability of premixed combustion involves intricately coupled physical processes,
which occur over a vast range of length scales. While presenting a great challenge
for DNS, the multi-scale nature of the problem can be exploited mathematically in
AEA. This framework has been employed to derive simplified theories describing
flame—flow interactions. The theory pertinent to the ‘corrugate flamelet’ regime was
given by Matalon & Matkowsky (1982) and Pelce & Clavin (1982). On the basis of
their theory, a general formulation for flame—acoustic coupling has been developed
recently (WWMP).

In most existing AEA theories of premixed flames, the fuel mass fraction and
temperature of the oncoming mixture are both assumed to be steady in time and
uniform in space, or when variations are present, the constant-density assumption is
made. In this paper, these restrictive assumptions were removed and an asymptotic
theory for premixed combustion under the influence of enthalpy fluctuations was
derived from the reactive N-S equations. Analogous to the well-known work of
Matalon & Matkowsky (1982) and Pelce & Clavin (1982), the flame is represented by
a single-order parameter, the front position (f), and its interaction with the ambient
flow motion is described by velocity and pressure jumps. By analysing the preheat
zone, these jumps are obtained to the second-order accuracy and are found to be
augmented by h_., the local enthalpy fluctuation advected to the flame front. The
generation of spontaneous sound waves by the flame and their back action was
analysed, leading to a fully interactive system that describes the flame—acoustic—
enthalpy coupling; see figure 1.

The general asymptotic theory was applied to several special cases, shedding useful
light on the role of enthalpy fluctuations in premixed combustion. The calculation of
the linear response of a planar flame to small-amplitude enthalpy perturbations
(§4) indicates that spatially non-uniform enthalpy fluctuations directly influence
the hydrodynamic motion. The analysis of one-dimensional enthalpy fluctuations
(§5) highlights the fact that by modulating the heat release, unsteady enthalpy
perturbations affect the generation of acoustic waves or even emit sound waves
directly. The linear-stability analysis (§6) reveals that enthalpy fluctuations modify
the D-L instability and may induce much more vigorous subharmonic parametric
instability. Finally, possible impact of enthalpy on the weakly nonlinear flame
dynamics was demonstrated by the extended M-S equation derived and studied
in §7. It may be noted that none of the effects highlighted here could be accounted
for by a thermal-diffusive model or the G-equation approach.

The present paper represents only a first step towards modelling the influence of
enthalpy disturbances on premixed combustion on the basis of first principles. Several
developments may be followed. A thorough investigation of the fully nonlinear
system is yet to be undertaken. Compared with the full reactive Euler or N-S
equations, the asymptotically reduced system gives us the computational advantage
that chemical reactions, gas expansion and acoustics are accounted for without the
need of resolving numerically the thin flame zone or solving the full compressible
equations. However, the front equation has to be solved in conjunction with
the Euler (or N-S) equations, and so accurate front tracking or capturing algorithms
are required.

The present asymptotic theory was derived for the ‘open loop’ case. It would be
interesting to extend it to ‘closed loop’ situations, so that one may study the mechanism
(d) of combustion instability. A further ingredient to be added is a suitable model de-
scribing how the feeding line responds to the acoustic signature. Such a physics-based
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theory would have important applications to active control using secondary fuel
injection.

Combustion in most practical applications takes place in turbulent flows. Since it
will remain infeasible in a foreseeable future for DNS to resolve thin flame zones or
reaction sheets, the main prediction tools will be the Reynolds-averaged equations or
large-eddy simulations. Therefore, in addition to modelling sub-scale/grid turbulence,
it is necessary to model flame—turbulence interaction, the most important among which
concerns modelling the turbulent flame speed (Peters 2000; Pitsch 2005). Theoretical
understandings gained from AEA analyses for laminar flames have, through the
flamelet concept, aided the modelling effort (Peters 2000). However, almost all models
ignore the effects of the spontaneously emitted acoustic waves and the oncoming
enthalpy perturbations. It would be interesting to develop improved models to include
these effects by exploiting the asymptotic formulations. Since enthalpy fluctuations
influence the flamelet motion, the turbulent flame speed Sy would depend on 4" as well
as on u’?, the root mean square of the velocity fluctuations. Furthermore, considering
that the flame dynamics are fundamentally influenced by the gas expansion and
thermal-diffusive effects, which are characterized by ¢ and Le respectively, one may
postulate that Sy should be parameterized as Sy = S (u'?, h'?;q, Le).

The work of X.W. was carried out during his sabbatical leave (May—October 2008)
in the Center of Turbulence Research, Stanford University.

Appendix. Second-order theory for the parametric instability

It follows from (3.22) that the position of the planar flame is, to O(8) accuracy,
given by

t
F(t) = / (1—1"(r))dz, (A1)
where
I7(t)=Iy+8[M, +In(1+q)+q/(1 + )11/ 1. (A2)
The acoustic source associated with the flame is given by
S =l = q(lo— 1) +38q[In(1 + ) +q/(L +q) + 5IP] Lo/ I5.  (A3)

This is used to calculate Ap, z, which acts on the flame.

The planar flame is_perturbed by a small-amplitude disturbance F < 1. The
hydrodynamic motion (U, V, P) <1 is governed by the linearized version of (3.8), i.e.

— + V-V =0,
0% (A4)

3 9 9? U 3/98\ 5
(r o)} (0) ()

IT=1"—=8In(1+q)I}/1} =1+ 8[M, +q/(1 + @)1}/ I3
With the viscous diffusion terms being included in the hydrodynamic equations, the
solution for (U, V, P) can still be written as (6.3) with (6.4) and (6.5), but the functions
C, and D, must be replaced by C*(&,¢) and D*(£,t), and the function I, in (6.5)
be replaced by It for £ > 0 and £ < 0, respectively. Functions C*(£, t) and DT (£, 1)

where
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now satisfy

c;+ik*-D+—0, (AS)

{R+ ;t 1+(z)7 —8Pr (aa; — k2> } (gﬁ) =0. (A6)

Let 6+(s, t) and 5+(s, t) denote the Laplace transforms of C* and DT(&, 1),
respectively, with respect to & > 0. Equation (A 6) is solved to give

N Rfl t N N N N N
CH(s,t)=—— | {R.G}(0",7)+8Pr k’CT(07,7) + 8Pr sCH(OT,T)} A7) dT

sA
+s—1c+(0+ 1), (A7)
i)+(s, t) = A(t / {[I*(F)—8Prs]DT(0",7)—8Pr DJF(OJr 1)} A(f)d7, (A8)
where

At) = exp{R+1 /f [sIT(7) — 8Pr (s> —k?)]d r}.
The continuity equation (A 5) is Laplace transformed to
sCH(s, 1) —CT(0,1)+ ik -D" =0. (A9)
Inserting (A 7) and (A 8) into (A 9) and making use of (A 5), we obtain the relation
—R, CH O, t)—8Prk*CT (0", )+ ITi k' -DT(0", 1)—8Pri k" - DF(0%,1) = 0. (A 10)
Use of the solution (6.4) in the velocity jump conditions (3.12) and (3.15) shows that
CH 07, 1) = —(¢s — ¢-) + 8 (319 D) (K + k_Iy), (A11)
D (0", 1) = i—kT(m +¢)—ql (ikNa+ {IZ [DF (0T, 1)+ i k'(¢s — ¢_)]

ik

+I§

[ ")+ L' + (G + 1, (07, t))oz} In(1 + q)} , (A12)

where I = Iy +6[In(14+¢q)+q/(1 +¢q)+ %19]16/102, as can be found from (6.4). The
above relations are inserted into (A 10) to give

Ry —00) — 'k +6.)+ g1 Ko — 5 DG 4w, (07, )i
0

_ al2 (., k)  qloy
Y (EUIRTC AVRA NRTCT SV S

On substituting the solution for P into (3.16), the pressure jump can be written as

R.¢\ +R ¢ —k(I"py —1"¢_) —k{(Ry — R_)G — Ap,:}a
= 8k{—qlD(Iok*a +kp_) — qglok*a +1In(1 + q)¢' /o). (A 14)
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Subtracting (A 13) from (A 14) leads to
(Ry + RO)PL + k(I + 17)p— — {qII"K* + k[(R+ —R_)G—Apy ¢l

152
= —5{ql@(lok3a +k*p_) + qLk*a + [ln(l +q)+ q }kzo/

21 +q)
qlz  [¢. L]  In(l+q) g2
mk |:IO 102 :| + IO (G + ua,,(O s l))k Ol}. (A 15)

The front equation (3.22) becomes o’ = ¢_ — SM,(k*a + k¢_/Iy). Combining this
equation with (A 15) to eliminate ¢_ in favour of «, we obtain
do" + Ba' +Ca =0, (A 16)

which governs the parametric instability, where .o/, # and % are functions of 7, given
by

_|_

qg+2

o = (R++R_)+6101{ 1n(1+q)+l@}k,

B = 2kI, —1—8{ [4(614‘1) In(1+g)+(g +2)l@}k2 +2{ln(1 +q)+ q] ng}
q 1+q]I;
In(1 + q)

¢ = —{q1§k2 +k {(m —R_)G— Apaqg] —8—
0

(G+uwm,nmﬂ
+5{ {2(’1;1) In(l+qg)+(q+ 12+ q}lolé

[1+2q
—q
q

q 1 Iy, >
In(1 —— 41D | =k ;.
n(l +¢q)+ 1+q+2 ]10
When h_,, =0, I =I,=1 so that ./, # and % simplify, and (A 16) reduces to the
equation governing the D-L instability to O(§) accuracy.
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